Extensions 1→N→G→Q→1 with N=C3⋊D4 and Q=C23

Direct product G=N×Q with N=C3⋊D4 and Q=C23
dρLabelID
C23×C3⋊D496C2^3xC3:D4192,1529

Semidirect products G=N:Q with N=C3⋊D4 and Q=C23
extensionφ:Q→Out NdρLabelID
C3⋊D41C23 = C22×S3×D4φ: C23/C22C2 ⊆ Out C3⋊D448C3:D4:1C2^3192,1514
C3⋊D42C23 = C22×D42S3φ: C23/C22C2 ⊆ Out C3⋊D496C3:D4:2C2^3192,1515
C3⋊D43C23 = C2×D46D6φ: C23/C22C2 ⊆ Out C3⋊D448C3:D4:3C2^3192,1516
C3⋊D44C23 = C2×S3×C4○D4φ: C23/C22C2 ⊆ Out C3⋊D448C3:D4:4C2^3192,1520
C3⋊D45C23 = C2×D4○D12φ: C23/C22C2 ⊆ Out C3⋊D448C3:D4:5C2^3192,1521
C3⋊D46C23 = S3×2+ 1+4φ: C23/C22C2 ⊆ Out C3⋊D4248+C3:D4:6C2^3192,1524
C3⋊D47C23 = C22×C4○D12φ: trivial image96C3:D4:7C2^3192,1513

Non-split extensions G=N.Q with N=C3⋊D4 and Q=C23
extensionφ:Q→Out NdρLabelID
C3⋊D4.1C23 = C2×Q8○D12φ: C23/C22C2 ⊆ Out C3⋊D496C3:D4.1C2^3192,1522
C3⋊D4.2C23 = C6.C25φ: C23/C22C2 ⊆ Out C3⋊D4484C3:D4.2C2^3192,1523
C3⋊D4.3C23 = D6.C24φ: C23/C22C2 ⊆ Out C3⋊D4488-C3:D4.3C2^3192,1525
C3⋊D4.4C23 = S3×2- 1+4φ: C23/C22C2 ⊆ Out C3⋊D4488-C3:D4.4C2^3192,1526
C3⋊D4.5C23 = D12.39C23φ: C23/C22C2 ⊆ Out C3⋊D4488+C3:D4.5C2^3192,1527
C3⋊D4.6C23 = C2×Q8.15D6φ: trivial image96C3:D4.6C2^3192,1519

׿
×
𝔽